71 research outputs found

    Analysis of optical observations and three-dimensional hybrid code simulation of the CRRES plasma injection experiments in space

    Get PDF
    Thesis (Ph.D.) University of Alaska Fairbanks, 1998The Combined Release and Radiation Effects Satellite (CRRES) was a NASA funded campaign designed to study a variety of plasma processes in the Earth's space environment. An analysis of optical data from three CRRES plasma injection experiments, in conjunction with results from a three-dimensional hybrid code simulation, have provided new insights into small-scale coupling processes in the ionosphere. The results have direct application to auroral processes, comets, and other similar geophysical/astrophysical systems

    Interaction of Magnetic Reconnection and Kelvin-Helmholtz Modes for Large Magnetic Shear: 2. Reconnection Trigger

    Get PDF
    A typical property of magnetopause reconnection is a significant perpendicular shear flow due to the fast streaming magnetosheath plasma. Therefore, the magnetopause represents a large magnetic and flow shear boundary during periods of southward interplanetary magnetic field, which can be unstable to Kelvin‐Helmholtz (KH) modes and to magnetic reconnection. A series of local three‐dimensional MHD and Hall MHD simulations is carried out to investigate the interaction of reconnection and nonlinear KH waves considering magnetic reconnection as the primary process. It is demonstrated that the onset reconnection causes a thinning of the shear flow layer, thereby generating small wavelength KH modes. In turn, the growing KH modes modify the current layer width, which modulate the diffusion regions, increase the local reconnection rates, and generate field‐aligned currents. The simulation results imply a limitation of total amount of open flux likely caused by nonlinear saturation of KH growth and the associated diffusion. It is also demonstrated that the reconnection rate maximizes for conditions that allow a strong nonlinear evolution of KH waves, i.e., fast shear flow and limited guide magnetic field. The presence of Hall physics increases the reconnection rate in the early stage; however, the maximum reconnection rate and the total amount of open flux at saturation are the same as in the MHD case

    Comparison Between Fluid Simulation with Test Particles and 1 Hybrid Simulation for the Kelvin-Helmholtz Instability

    Get PDF
    A quantitative investigation of plasma transport rate via the Kelvin‐Helmholtz (KH) instability can improve our understanding of solar‐wind‐magnetosphere coupling processes. Simulation studies provide a broad range of transport rates by using different measurements based on different initial conditions and under different plasma descriptions, which makes cross literature comparison difficult. In this study, the KH instability under similar initial and boundary conditions (i.e., applicable to the Earth\u27s magnetopause environment) is simulated by Hall magnetohydrodynamics with test particles and hybrid simulations. Both simulations give similar particle mixing rates. However, plasma is mainly transported through a few big magnetic islands caused by KH‐driven reconnection in the fluid simulation, while magnetic islands in the hybrid simulation are small and patchy. Anisotropic temperature can be generated in the nonlinear stage of the KH instability, in which specific entropy and magnetic moment are not conserved. This can have an important consequence on the development of secondary processes within the KH instability as temperature asymmetry can provide free energy for wave growth. Thus, the double‐adiabatic theory is not applicable and a more sophisticated equation of state is desired to resolve mesoscale process (e.g., KH instability) for a better understanding of the multi‐scale coupling process

    Variation of the Jovian Magnetopause Under Constant Solar Wind Conditions: Significance of Magnetodisc Dynamics

    Get PDF
    It is generally believed that variations in the upstream solar wind (SW) and interplanetary magnetic field (IMF) conditions are the main cause of changes of Jupiter's magnetopause (JM) location. However, most previous pressure balance models for the JM are axisymmetric and do not consider internal drivers, for example, the dynamics of the magnetodisc. We use three-dimensional global magnetosphere simulations to investigate the variation of the JM under constant SW/IMF conditions. These simulations show that even without variations in the upstream driving conditions, the JM can exhibit dynamic variations, suggesting a range as large as 50 Jupiter radii in the subsolar location. Our study shows that the interchange structures in the Jovian magnetodisc will introduce significant radial dynamic pressure, which can drive significant variation in the JM location. The results provide important new context for interpreting the JM location and dynamics, with key implications for other internally mass-loaded and/or rapidly rotating systems

    How Jupiter's Unusual Magnetospheric Topology Structures Its Aurora

    Get PDF
    Jupiter's bright persistent polar aurora and Earth's dark polar region indicate that the planets' magnetospheric topologies are very different. High-resolution global simulations show that the reconnection rate at the interface between the interplanetary and jovian magnetic fields is too slow to generate a magnetically open, Earth-like polar cap on the timescale of planetary rotation, resulting in only a small crescent-shaped region of magnetic flux interconnected with the interplanetary magnetic field. Most of the jovian polar cap is threaded by helical magnetic flux that closes within the planetary interior, extends into the outer magnetosphere and piles-up near its dawnside flank where fast differential plasma rotation pulls the field lines sunward. This unusual magnetic topology provides new insights into Jupiter's distinctive auroral morphology

    The case for studying other planetary magnetospheres and atmospheres in Heliophysics

    Full text link
    Heliophysics is the field that "studies the nature of the Sun, and how it influences the very nature of space - and, in turn, the atmospheres of planetary bodies and the technology that exists there." However, NASA's Heliophysics Division tends to limit study of planetary magnetospheres and atmospheres to only those of Earth. This leaves exploration and understanding of space plasma physics at other worlds to the purview of the Planetary Science and Astrophysics Divisions. This is detrimental to the study of space plasma physics in general since, although some cross-divisional funding opportunities do exist, vital elements of space plasma physics can be best addressed by extending the expertise of Heliophysics scientists to other stellar and planetary magnetospheres. However, the diverse worlds within the solar system provide crucial environmental conditions that are not replicated at Earth but can provide deep insight into fundamental space plasma physics processes. Studying planetary systems with Heliophysics objectives, comprehensive instrumentation, and new grant opportunities for analysis and modeling would enable a novel understanding of fundamental and universal processes of space plasma physics. As such, the Heliophysics community should be prepared to consider, prioritize, and fund dedicated Heliophysics efforts to planetary targets to specifically study space physics and aeronomy objectives

    Fundulus as the premier teleost model in environmental biology : opportunities for new insights using genomics

    Get PDF
    Author Posting. © Elsevier B.V., 2007. This is the author's version of the work. It is posted here by permission of Elsevier B.V. for personal use, not for redistribution. The definitive version was published in Comparative Biochemistry and Physiology Part D: Genomics and Proteomics 2 (2007): 257-286, doi:10.1016/j.cbd.2007.09.001.A strong foundation of basic and applied research documents that the estuarine fish Fundulus heteroclitus and related species are unique laboratory and field models for understanding how individuals and populations interact with their environment. In this paper we summarize an extensive body of work examining the adaptive responses of Fundulus species to environmental conditions, and describe how this research has contributed importantly to our understanding of physiology, gene regulation, toxicology, and ecological and evolutionary genetics of teleosts and other vertebrates. These explorations have reached a critical juncture at which advancement is hindered by the lack of genomic resources for these species. We suggest that a more complete genomics toolbox for F. heteroclitus and related species will permit researchers to exploit the power of this model organism to rapidly advance our understanding of fundamental biological and pathological mechanisms among vertebrates, as well as ecological strategies and evolutionary processes common to all living organisms.This material is based on work supported by grants from the National Science Foundation DBI-0420504 (LJB), OCE 0308777 (DLC, RNW, BBR), BES-0553523 (AW), IBN 0236494 (BBR), IOB-0519579 (DHE), IOB-0543860 (DWT), FSML-0533189 (SC); National Institute of Health NIEHS P42-ES007381(GVC, MEH), P42-ES10356 (RTD), ES011588 (MFO); and NCRR P20 RR-016463 (DWT); Natural Sciences and Engineering Research Council of Canada Discovery (DLM, TDS, WSM) and Collaborative Research and Development Programs (DLM); NOAA/National Sea Grant NA86RG0052 (LJB), NA16RG2273 (SIK, MEH,GVC, JJS); Environmental Protection Agency U91620701 (WSB), R82902201(SC) and EPA’s Office of Research and Development (DEN)

    Satellite-induced electron acceleration and related auroras

    Full text link
    Satellite-induced auroral emissions are known since decades, in particular those associated with the interaction of Io with the Jovian ionosphere. These emissions range from low frequency radio to UV. Flyby of Io allowed to better understand the power generation close to the satellite, and showed the existence of electron beams accelerated at high latitude. We will present a study of the power transfer between the local interaction at Io and the electron accelerated close to Jupiter. It shows that AlfvĂ©n acceleration can explain the morphology and brightness of the Io-related auroraeand the observed accelerated electrons in Io’s wake. The study is extended to the Europa, Ganymede and Enceladus for which auroral emissions have been observed, as well as to Callisto and to the principal inner satellites of Saturn

    Magnetic Reconnection With a Fast Perpendicular Sheared Flow

    No full text
    Magnetic reconnection at the Earth\u27s low‐latitude magnetopause near the flank region is likely associated with a large sheared flow, being frequently quasi‐perpendicular to the antiparallel magnetic field components. The magnitude of a fast sheared flow can be super‐AlfvĂ©nic and even overcome the local fast mode speed. A scaling analysis implies a contradiction between the WalĂ©n relation and the balance of the total pressure for magnetic reconnection with a supercritical perpendicular sheared flow. This study uses one‐ and two‐dimensional magnetohydrodynamic (MHD) simulations to demonstrate that the traditional reconnection layer violates the WalĂ©n relation but still maintains the total pressure balance in such a configuration. The results show an expanded outflow region, consistent with the presence of divergent normal flow, and a significant decrease of the plasma density as well as the thermal pressure in the outflow region. In contrast, the magnitude of the magnetic field in the outflow region matches the value in the inflow region due to the total pressure balance, which is fundamentally different from the classical reconnection layer under sub‐AlfvĂ©nic perpendicular sheared flow conditions. In three‐dimensional geometry, the fast sheared flow without being stabilized by the magnetic field is expected to be Kelvin‐Helmholtz unstable. However, the three‐dimensional MHD simulation suggests that such structure can be KH stable. Although, the presence of surface waves modulates some two‐dimensional features, the major characteristics of the expanded outflow region are likely to be observed by in situ satellites

    Interaction of Magnetic Reconnection and Kelvin-Helmholtz Modes for Large Magnetic Shear: 1. Kelvin-Helmholtz Trigger

    No full text
    At the Earth\u27s magnetopause, both magnetic reconnection and the Kelvin‐Helmholtz (KH) instability can operate simultaneously for southward interplanetary magnetic field conditions. The dynamic evolution of such a system can be expected to depend on the importance of KH wave evolution versus reconnection and therefore on the respective initial perturbations. In this study, a series of local three‐dimensional MHD and Hall MHD simulations are carried out to investigate the situation where the Kelvin‐Helmholtz instability is initially the primary process. It is demonstrated that magnetic reconnection is driven and strongly modified by nonlinear KH waves. The highest reconnection rate is close to the Petschek rate, but the total open flux is limited by the size of the nonlinear KH wave. Most of the total open magnetic flux has no flux rope structure and originates from reconnection at thin current layers which connect adjacent vortices. In contrast, complex flux ropes generated by patchy reconnection within the KH vortices dominate the vicinity of the equatorial plane; however, the associated open flux with flux ropes is a minor contribution to the total open flux. Although the presence of Hall physics leads to a fast early increase of the reconnection rate, the maximum reconnection rate and the total amount of open magnetic flux at saturation are the same as in the MHD case
    • 

    corecore